
Early diagnosis model of Alzheimer’s Disease based
on sparse logistic regression

Ruyi Xiao1 & Xinchun Cui1 & Hong Qiao2 & Xiangwei Zheng3 & Yiquan Zhang1

Received: 8 April 2020 /Revised: 14 August 2020 /Accepted: 26 August 2020

# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Accurate classification of Alzheimer’s Disease (AD) and its prodromal stage, i.e.,
mild cognitive impairment (MCI) are critical for the effective treatment of AD.
However, compared with AD classification tasks, predicting the conversion of
MCI to AD is relatively difficult. as there are only minor differences among MCI
groups. What’s more, in brain imaging analysis, the high dimensionality and
relatively small number of subjects brings challenges to computer-aided diagnosis
of AD and MCI. Many previous researches focused on the identification of
imaging biomarkers for AD diagnosis. In this paper, we introduce sparse logistic
regression for the early diagnosis of AD. Sparse logistic regression (SLR) uses
L1/2 regularization to impose a sparsity constraint on logistic regression. The L1/2

regularization is considered a representative of Lq regularization, where fewer but
informative key brain regions are applied for the classification of AD/MCI. We
evaluated the SLR on 197 subjects from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. Experimental results showed that the SLR improves
the classification performance of AD/MCI compared other classical methods.
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1 Introduction

Alzheimer’s disease (AD) is a neurological brain disease, with symptoms such as loss
of cognitive and memory, which severely affect people’s daily life [40]. According to
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statistics, there are 50 million AD patients in the world, which is likely to double by
2050 [30]. Mild cognitive impairment (MCI) is the transitional stage between healthy
elderly and AD [15]. It is estimated that 15% to 20% of individuals over the age of
65 have MCI. Nearly 10% to 15% of MCI patients convert to AD each year [31]. So,
an accurate prediction of future conversion from MCI to AD is essential for the early
diagnosis of AD to delay the deterioration of the disease [17].

In the past few years, many machine learning methods have been used for the early
detection of diseases [7, 8, 10, 11]. For example, Chiranji et al. [9] combined possibilistic fuzzy
c-mean and intuitionistic fuzzy c-mean for the diagnosis of breast cancer, featuring high accuracy
with clustering and breast cancer detection. Kauser et al. [1] proposed an integrated scheme for heart
disease diagnosis which combined cuckoo search and rough set. Tripathy et al. [34] used rough set
with formal concept analysis for intelligent medical diagnosis. In order to minimize the decision
rules, they use two processes to mine suitable rules. Luck et al. [36] combined adaptive genetic
algorithm and logistic regression for the early diagnosis ofAD.Adaptive genetic algorithmwas used
for feature selection, and logistic regressionwas used for classification. Liu et al. [22] usedmulti-task
learning approach for feature selection to solve the high-dimensional problem of neuroimaging data.
Amulti-kernel support vector machine was used for classification. Previous studies have shown that
it is not only important but also challenging to extract the representative biomarkers for classification
in high-dimensional neuroimage data analysis. Recently, logistic regression (LR) is a widely used
method of machine learning, aiming at solving classification problems [3, 39]. In addition to the
class label information it can obtain direct classification probabilities [21]. Faced with the problems
mentioned above, many generalized models and methods have been proposed [23, 32]. Zhang et al.
[48] used L2-Regularized logistic regression for MCI classification. However, the L2 regularization
did not produce sparse solutions. Koh et al [19] introduced the L1 regularized logistic regression for
high-dimensional data classification. The L1 regularization can shrink the regression coefficients to
zero, thereby selecting multiple important features simultaneously [37]. However, L1 regularization
maymake the estimated parameters biased [26]. For the above problems, Xu et al. [42] proposed the
L1/2 regularization. As a representative of Lq (0 < q < 1)regularization, the L1/2 regularization boasts
decent properties, such as unbiasedness, sparsity and oracle properties [43]. In this paper, we used
logistic regression with L1/2 regularization for the early diagnosis of AD. SLR can better adapt to the
characteristics of high-dimensional small samples of AD datasets and achieve better classification
performance with minimal features. The main contributions of this paper include: (1) The L1/2

regularization was used to select the most discriminative features for classification (2) The SLR
was applied to predict the conversion of MCI to AD, allowing timely treatment to delay disease
progression (3) Experimental data was collected from ADNI database. Through the Automated
Anatomical Labeling (AAL) template [35], the brain was divided into 90 regions of interest (ROI).
We extracted the gray matter volume of 90 regions as features.

The rest of this work is arranged as follows. The second part of this paper introduced related
works. The third part described the proposed method. The fourth part presented the experi-
mental results with a discussion. Finally, the last part of the presentation offered a conclusion.

2 Related works

In this paper, we implemented LR for the binary classification. Let xi = (xi1, xi2, xi3,…,
xin)T be the i-th sample vector of matrix X. Then the formula of the logistic regression
model is given by:
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πi ¼ p yi xijð Þ ¼ sigmoid xTi θ
� � ¼ exp xTi θ

� �
1þ exp xTi θð Þ : ð1Þ

where, θ = (θ0, θ1, θ2,…, θn) represents coefficient matrix of (n + 1) × 1. πi is the predicted
probability. yi ∈ {0, 1} is a response variable, which is then obtained by I(πi > 0.5), where I(.) is
an indicator function.

The log-likelihood can be expressed as:

log ∏
m

i¼1
pðyijxiÞ ¼ ∑

m

i¼1
yilog πið Þ þ 1�yiÞlog 1�πiÞÞ:ððð ð2Þ

The loss function based on Eq. (2) is shown as:

J θð Þ ¼ −
1

m
∑
m

i¼1
yilog πið Þ þ 1−yið Þlog 1−πið Þð Þ: ð3Þ

In brain imaging analysis, logistic regression is prone to overfitting caused by high dimen-
sionality but with a small number of training samples. To reduce the number of features and
obtain a robust classifier, the penalization techniques for logistic regression is given by:

J θð Þ ¼ −
1

m
∑
m

i¼1
yilog πið Þ þ 1−yið Þlog 1−πið Þð Þ þ λ ∑

n

j¼1
P θ j
� �

: ð4Þ

where, λ > 0 is a tuning parameter and P(θj) is the regularization term. Many regularizations
methods are proposed to solve overfitting, such as LASSO, SCAD and Elastic net
regularization.

3 Methods

Figure 1 is an overview of method consisting of: (1) image preprocessing and feature
extraction (2) SLR model-training (3) SLR-based classification of AD, MCI and HC. The
following is a detailed description of the approach.

3.1 ADNI database

The experimental data set used in this paper was derived from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). ADNI was
founded in 2003 by the National Institute of Biomedical Imaging and Bioengineering. As
a non-profit organization [44], ADNI provides unlimited data access and encourages
researchers to develop potential methods for analyzing the progression of early AD.
Magnetic resonance imaging (MRI) is a widely used imaging mode in the diagnosis of
AD [28, 29, 38], a modality that facilitates comparisons between different soft tissues.
Therefore, we used structural MR images for analysis. We selected MRI images of 197
subjects in the ADNI database, including 51 AD, 50 healthy controls (HC) and 96 MCI
(including 51 converted MCI (cMCI) who converted to AD within 24 months and 45
stable MCI (sMCI) who has not converted to AD within 24 months) Table 1 presents
detailed information about these subjects.
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3.2 Image preprocessing and feature extraction

The MRI images downloaded from the ADNI database required a series of image preprocess-
ing, that extracted the gray matter volume of 90 regions of interest as effective features. The
effective features were input into the classifier for classification. The overview of image
preprocessing and feature extraction are shown in Fig. 2.

In this paper, we used SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/) and VBM8 toolbox
to preprocess the MRI images. The preprocessing process consisted of 5 steps, i.e., (1) skull
stripping (removing non-brain tissue), (2) spatial standardization and segmentation (grey matter
(GM), white matter (WM) and cerebrospinal fluid (GSF)), (3) modulation (The density feature

Image Pre-process and Feature Extraction

MRI Image

Evaluate results

Testing

SLR model

Training

SLR  model

Fig. 1 Overview of the method

Table 1 Statistical information of subjects

Diagnosis Subjects Age
(Mean ± Standard
Deviation)

Gender(F/M) MMSE
(Mean ± Standard
Deviation)

CDR
(Mean ± Standard
Deviation)

AD 51 75.8 ± 7.5 23/28 23.6 ± 2.2 0.7 ± 0.3
HC 50 77.8 ± 6.8 27/23 28.8 ± 1.4 0.0 ± 0.0
cMCI 51 72.5 ± 6.5 26/25 26.7 ± 1.3 0.5 ± 0.0
sMCI 45 71.9 ± 7.6 20/25 27.3 ± 1.6 0.5 ± 0.0

CDR: clinical dementia rating scale, 0 = no dementia, 0.5 = suspected dementia, 1 =mild dementia, MMSE:
Concise mental state examination scale
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was transformed into a volume feature), (4) smoothing (removing noise from the image), (5)
registration (registering each subject’s gray matter volume map onto an AAL template) (6)
selecting the gray matter volume of the 90 auto-labeled regions of interest (ROI) as features.

3.3 Sparse logistic regression model

The L1/2 regularization can yield the most sparse solution and select important features for
classification. The loss function of a logistic regression with L1/2 regularization is given by:

J θð Þ ¼ −
1

m
∑
m

i¼1
yilog πið Þ þ 1−yið Þlog 1−πið Þð Þ þ λ ∑

n

j¼1
θ j
�� ��1=2: ð5Þ

Where, λ is regularization parameters that control the model’s sparsity and group effect [46].
In this paper, λ was adjusted by ten-fold cross-validation (CV) in the training set.

3.4 A coordinate descent algorithm for sparse logistic regression

The L1/2 regularization is non-convex. In solving non-convex problems, coordinate descent
algorithm showed significant efficiency and convergence [4]. The coordinate descent

Fig. 2 Image preprocessing and feature extraction
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algorithm [16] is a “one -at -a-time” approach. The univariate half thresholding operator of the
coordinate descent algorithm is as follows.

θ j ¼ Half ω j;λ
� � ¼ 2

3
ω j 1þ cos

2 π−φ ω j
� �� �
3

� �� �
if ω j
�� �� > 3

4
λð Þ23

0 otherwise

8<
: : ð6Þ

The Eq. (3) is linearized by one-term Taylor series expansion:

L θ;λð Þ≈ 1

2n
∑
n

i¼1
Zi−X iθð Þ Wi Zi−X iθð Þ þ λ ∑

n

j¼1
jθ jj1=2: ð7Þ

Where Zi ¼ X i
eθþ Y i− f X i

eθ� �
f X i

eθ� �
1− f X i

eθ� �� � is the estimated response, ωi ¼ f X i
eθ� �

1− f X i
eθ� �� �

is

the weight, f X i
eθ� �

¼ exp X i
eθ� �

= 1þ exp X i
eθ� �� �

is a evaluate value under current param-

eters. The procedure of the coordinate descent algorithm for the SLR is given by:
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4 Experiment results

4.1 Experiment setting

In this paper, we implemented three classification tasks: AD subjects versus HC subjects (AD
vs. HC), MCI subjects versus HC subjects (MCI vs. HC) and cMCI versus sMCI (cMCI vs.
sMCI). In order to achieve a fair comparison, two procedures were set up. First, each dataset
was randomly distributed into training sets and test sets, at a ratio of 7:3. Second, ten-fold
cross-validation was performed in the training sets to select optimal parameter λ. To avoid bias
caused by random distribution of samples, we repeated the experiment 50 times. The classi-
fication performance of all methods was quantified by calculating accuracy (ACC), sensitivity
(SEN), specificity (SPE), receiver operating characteristic curve (ROC) and area under the
receiver operating characteristic (AUC).

4.2 Classification results

This part presents a summary and the discussion of the results. To reduce feature dimensions
and select the discriminate brain regions, we used the L1/2 regularization to ensure the sparse
solution. We compared the classification performance of SLR on AD with LR, LR with L2

regularization (LR-L2) and LR with L1 regularization (LR-L1).
Table 2 lists the classification results via different methods on AD vs. HC and MCI vs. HC.

In AD vs. HC, the SLR had a classification accuracy of 93.33%, sensitivity of 92.25%,
specificity of 94.75% and the AUC of 0.96, higher than those of L2 and L1. In MCI vs. HC, the
SLR had a classification accuracy of 82.75%, sensitivity of 86.67%, specificity of 78.57% and
the AUC of 0.89. The classification performance of SLR showed a better classification
performance than other methods.

Figure 3 shows the corresponding ROC curves. Through the ROC curve, we can further
investigate the performance of SLR on AD classification. SLR performs better than all the
other methods in the two classification tasks, indicating that L1/2 regularization can find out the
most discriminant features to boost the accuracy of SLR.

We also carried out experiments on classification cMCI from sMCI. As a prodromal stage
of AD, MCI has a high conversation risk, so it is necessary to identify cMCI from sMCI. Early
diagnosis and intervention can delay the conversion of MCI to AD, with clinical and practical
significance. The corresponding results are shown in Table 3.

Table 2 Comparison of different methods in AD/MCI classification

Method AD vs. HC MCI vs. HC

ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

LR 80.00 78.75 82.85 0.87 70.21 75.75 57.14 0.74
LR-L2 90.25 87.50 92.85 0.93 79.41 85.89 74.75 0.84
LR-L1 90.79 88.21 92.85 0.94 80.10 86.21 75.87 0.87
SLR 93.33 92.25 94.75 0.96 82.75 86.67 78.57 0.89
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From Table 3, in cMCI vs. sMCI, the classification accuracy, sensitivity and specificity of
SLR are 72.87%, 81.25%, 65.45% respectively. Compared with LR-L1, the classification
accuracy of SLR is more than 3 percentage points higher.

Figure 4 shows the ROC curve obtained by different methods in cMCI and sMCI
classification. It can be further proved by the ROC curve and the AUC values shown in
Table 3 that SLR can cope with challenges brought by the early diagnosis of AD, and is better
tool for cMCI and sMCI classification.

4.3 The most discriminative brain regions

In addition to introducing the classification performance, we also reported the AD-related brain
regions selected by the SLR method. Figure 5 plots some frequently selected brain regions for AD
vs. HC, which are known to be related to AD [6, 13, 18, 25, 41]. For example, the hippocampus is
related to human memory and learning. It is the first brain region to be damaged in relation to AD
disease. The amygdala controls people’s emotions and cognition. Some studies also investigated the
role of the parahippocampal gyrus and precuneus in patients with AD [14, 47].

4.4 Comparison with other methods

To further reflect the advantages of SLR, we listed some classical methods in recent years.
Table 4 shows the classification results obtained by other methods. In Table 4, the SLR always
has the highest classification accuracies in AD vs. HC, MCI vs. HC and cMCI vs. sMCI.,
further proving the advantages of SLR in AD classification.

Fig. 3 ROC curves of different methods for classification of AD and MCI

Table 3 Comparison of different methods incMCI andsMCI

Method cMCI vs. sMCI

ACC (%) SEN (%) SPE (%) AUC

LR 56.25 62.50 50.00 0.61
LR-L2 68.75 73.35 62.50 0.68
LR-L1 69.45 75.00 64.01 0.71
SLR 72.87 81.25 65.45 0.75
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4.5 General discussion

In this study, we used sparse logistic regression for AD vs. HC, MCI vs. HC and cMCI vs.
sMCI classifications. It is worth noting that the SLR method obtains classification accuracies
of 93.33% and 82.75% for AD vs. HC and MCI vs. HC classification with the most
discriminative features selecting by L1/2 regularization. This proves the L1/2 regularization a
useful method to discover the disease-related biomarkers and improve classification perfor-
mance. As to predicting the conversion of MCI to AD, a challenge task to the study, it is
necessary to distinguish cMCI from sMCI, so that sMCI subjects can get timely treatment for
possible delay of progressing to AD. The classification accuracy obtained by SLR in cMCI vs.
sMCI is 72.87%, an improvement of 4% (vs. LR-L2) and 3% (vs. LR-L1) respectively. SLR
has a desirable performance for MCI conversion prediction. We also compared the classifica-
tion accuracy of SLR with other studies. Table 4 lists the corresponding comparison results.
The performance of the SLR was highly competitive compared to other methods reported in
the literature for AD classification and the prediction of MCI-to-AD conversion.

Although the proposed method demonstrated a desirable performance for AD detection and
MCI conversion prediction, there are also some limitations in the present study. Firstly, we
used only single-mode data for our experiments. Secondly, this article only took into account
the two-class classification scenario (i.e., AD vs. HC, MCI vs. HC, cMCI vs. sMCI), while
SLR for muli-class classification was ignored. In the future study, we will use multimodal data
for experiments and test the proposed model for three classifications.

Fig. 4 ROC curves of different methods in cMCI/sMCI classification

AD vs.HC

Fig. 5 The most discriminative brain regions identified by the proposed SLR method for AD vs. HC
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5 Conclusion

In this paper, we investigated the efficiency of SLR method in identifying AD subjects, MCI
subjects, and HC subjects. To reduce feature dimensions and find out the discriminative brain
regions, we used the L1/2 regularization to produce sparse solution. We evaluated the SLR
method based on ADNI dataset. The experimental results indicated that the performance of the
SLR can compete strongly with state-of-the-art techniques. In the future study, we will
consider further optimization of the logistic regression model to improve the classification
performance of the model, and better apply it in AD diagnosis.
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